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According to the conventional approach neural ensembles are modeled with fixed ionic concentrations in the
extracellular environment. However, in some cases the extracellular concentration of potassium ions cannot be
regarded as constant. Such cases represent specific chemical pathway for neurons to interact and can influence
strongly the behavior of single neurons and of large ensembles. The released chemical agent diffuses in the
external medium and lowers thresholds of individual excitable units. We address this problem by studying
simplified excitable units given by a modified FitzHugh-Nagumo dynamics. In our model the neurons interact
only chemically via the released and diffusing potassium in the surrounding nonactive medium and are per-
manently affected by noise. First, we study the dynamics of a single excitable unit embedded in the extracel-
lular matter. That leads to a number of noise-induced effects such as self-modulation of firing rate in an
individual neuron. After the consideration of two coupled neurons we consider the spatially extended situation.
By holding parameters of the neuron fixed, various patterns appear ranging from spirals and traveling waves to
oscillons and inverted structures depending on the parameters of the medium.
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I. INTRODUCTION

According to a conventional view on neuronal dynamics,
the electrical activity of a cell is represented by depolariza-
tion of its membrane potential. It is well described by the
famous Hodgkin-Huxley model �1� describing the dynamics
of the different ion channels and the gating ions. But also
simplified model systems using less number of variables and
control parameters �2� are able to specify the many aspects of
neuronal dynamics. Among them, the FitzHugh-Nagumo
�FHN� model �3� with a few control parameters plays the
role of popular paradigm for many excitable systems. Due to
its simplicity it helps a lot that ideas, which have been de-
veloped in neuronal dynamics, can be transferred to related
problems of other nonlinear dynamics �4�.

But an inevitable assumption and simplification has been
made for these prototypical neuron models in terms of ionic
currents. For example, it was assumed that in spite of trans-
membrane currents, both extracellular and intracellular ionic
concentrations remain unchanged during depolarizations.
Such a simplification is natural and acceptable if one consid-
ers individual neurons or segments of an excitable medium
during a sufficiently short course of firing.

However, in other cases it will be not realistic. For ex-
ample, there is experimental evidence that extracellular con-
centration of potassium ions can vary significantly during the
course of intensive neuronal firings �5,6�. The detailed mod-
eling of what happens during the course of ischemia shows
the strong increase in extracellular potassium concentration
up to 80 mM �7–11�. The glial cells, surrounding and sup-
porting neurons, activate the potassium pumping when its
concentration rises considerably �more than twice in medical
leech� �12�. This excessive elevation of potassium concentra-
tion is considered to be an important element of mechanism
of epileptic seizure development �13,14�. As the relevant
computational studies, early modeling attempts were focused
mostly on mechanisms of extracellular potassium clearance

and showed that pathways different from diffusion must be
involved in this process �15–18�. More recent models ad-
dressed the detailed neuronal morphology �19,20� or the role
of specific ion channels in formation of self-sustained burst-
ing behavior �13,21�. It was also shown that the interplay
between ion concentrations and neural activity can lead to
self-sustained pathological neural activation even in the case
of an isolated cell. The wider list of modeling issues on the
topic was recently reviewed in �22�.

While the effects of variable ionic concentration are em-
bedded in the quantitative high-dimensional models, it is dif-
ficult to distinguish them from other aspects of system be-
havior. At the same time, the set of frequently used
simplified models does not cover the problem, just not hav-
ing the appropriate control parameters.

One of the authors addressed this problem in recent works
�23,24�, where the effects of potassium mediated coupling
were investigated using the Hodgkin-Huxley type model of
leech neurons. It was shown that such rather simplified but
still quantitative model reproduces the main features of small
ensembles of potassium-driven neurons.

However, to study the behavior of large networks by
means of a quantitative model, one needs to reduce the num-
ber of control parameters that are difficult to estimate or are
just unknown. The alternative way is to develop a simplified
nondimensional model that can capture at a qualitative level
the specific features of potassium-coupled neurons and al-
lows one to build large networks using a reasonable set of
control parameters.

In the present work we derive such a model in the form of
an extended FHN system �3� with an additional equation
describing the dynamics of extracellular potassium. Since
our model inherits the key features of a FHN neuron, it is
physically transparent and tractable and thus provides the
better chance to learn more about nonlinear mechanisms
governing the formation of spatiotemporal patterns in large
networks. Furthermore, compared to leaky integrate and fire
models �LIF� the FHN includes the reset mechanism of the
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neuron. Some dynamical behavior which we will observe
later on in the paper refers to the excited state of the FHN
which is not provided by the LIF model �25,26�.

Applied to interacting neurons we assume that the inter-
action of neurons is restricted to the single chemical path-
way. Coupling takes place indirectly due to the potassium
concentration outside the cells only. Although there is no
explicit distance defined in the extended model, the neurons
are strictly separated and a direct contact of the action po-
tentials is excluded. Therefore, the transport of activity
through the heterogeneous medium of neurons and exterior
is slower than in a homogeneous excitable medium.

The patterns appearing in the two-dimensional system
show phenomena, which are reminiscent of chemical experi-
ments in which comparable heterogeneous situations such as
two-layer systems or chemical oscillators moving in a diffu-
sive environment, have been studied �27,28�. Also some of
the presented structures relate to studies on the Ca2+ release
across the endoplasmathic recituculum �29,30�, where clus-
ters with a finite number of ion channels on the recituculum
take over the role of the noisy excitable neurons and Ca2+

diffuses freely in the cytoplasm.
In our work we attempt to classify the observed spa-

tiotemporal patterns according to the relation between the
key control parameters of the extracellular medium. The
most noticeable behaviors are randomly walking spots, long-
living meandering excitations, antiphase firing patterns, and
inverted spirals and waves.

II. MINIMAL MODEL FOR A POTASSIUM-DRIVEN
NEURON

A. Background

We consider an environment which is schematically de-
picted in Fig. 1�a�. We assume that there is a certain volume
between the cells from which the ionic exchange with the
outer bath is rate limited. For simplicity we assume that this
volume is homogeneous and we denote the potassium con-
centration here as �K+�e.

With time, particularly during firing events in neurons, the
potassium channels PC1 in its membranes become open and
outward currents from the cells deliver potassium to the ex-
tracellular space. Thus, �K+�e rises while the intercellular po-
tassium concentration �K+�i decreases just slightly because

�K+�i� �K+�e. In fact, one can neglect the associated intrac-
ellular changes in the potassium concentration and assume
that this concentration remains constant.

Na-K ATP PC2 pumps K+ back into the cells. This uptake
is balanced by the leakage when the potassium concentration
is at equilibrium value �K+�0. The exchange of K+ ions with
a surrounding bath is assumed to take place by a diffusion
process, hence governed by the concentration difference be-
tween the exterior and the bath. Assuming the bath potas-
sium concentration to be equal �K+�0, one can simplify the
description of the process by incorporating all potassium up-
take processes in an effective diffusion rate parameter �.

Then the balance of potassium concentration in the inter-
cellular space �K+�e can be described as the following:

W
d�K+�e

dt
=

1

F
�
i=1

N

Ii,K + ���K+�0 − �K+�e� , �1�

where W is the extracellular volume per unit area of the
membrane, N is the total number of cells being neighbors to
this volume, and Ii,K is the electric potassium current per unit
area from the ith cell which is divided by Faraday’s constant
F to provide the ion flow. The second term ���K+�0− �K+�e�
describes the effective diffusion of potassium to and from the
bath. This balance Eq. �1� provides the basis for the qualita-
tive description in terms of a functional model we will intro-
duce below.

Note that the variation in the ratio between the extra- and
intracellular potassium concentrations affects the corre-
sponding �Nernst� potential and, hence, the firing activity.
The considerable rise of extracellular potassium concentra-
tion depolarizes the cell and can evoke the transition to spon-
taneous firing. However, too high extracellular potassium
concentration becomes toxic and can block the cell activity
completely.

B. Model

In this subsection we propose a functional model that
aims the qualitative reproduction of main effects arising if a
variable extracellular potassium concentration is taken into
account. The structure of the model is schematically depicted
in Fig. 1�b�. Namely, several excitable units standing for a
number of neurons contribute to the extracellular potassium
increase. This “external activator” stands for the intercellular
space between the cells with variable potassium concentra-
tion. It is �i� activated during a high-level state of one of the
excitable units, �ii� provides an additional stimulus to the
excitable units, and �iii� relaxes to an equilibrium when it
receives no activation.

Let us first confine to a single neuron interacting with the
external medium. Particularly, we will implement the activity
of the excitable neuron by the FHN system �2,3�. Therefore,
we assume that the gating of potassium release of a single
neuron is given by

�ẋ = x − x3/3 − y , �2�
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FIG. 1. �Color online� �a� Schematic representation of the po-
tassium signaling pathways between closely located cells. �b� The
corresponding structure of the functional model.
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��x�ẏ = x + a − Cz , �3�

where � controls the time scale separation of the fast activa-
tor x and the slow inhibitor y. The operating regime of the
FHN neuron is defined by a playing the role similar to the
applied current in ionic current-based neuron models. We
assume that it may fluctuate around some mean value a0:

a = a0 + �2D��t� , �4�

where ��t� is white Gaussian noise with zero mean and in-
tensity is scaled by D.

An additional time scale ��x� in Eq. �3� is introduced in
order to control the two time scales, associated with firing
�high level of x variable� and refractory state �low level of x�
independently, which will gain importance in our problem.
Specifically, we introduce the sigmoidal function

��x� =
1

2
�1 + tanh� x

xs
	
 , �5�

which is sensitive to the current value of the x variable: it
tends to zero for x�0, and to 1 if x�0, while xs scales the
transition between these states. Actually, we use Eq. �5� as a
smooth replacement of a Heaviside function to distinguish
between the excited and the resting states of the FHN neu-
ron. With Eq. �5� ��x� shapes as

��x� = �l + ��r − �l���x� �6�

and takes values �l and �r in the rest and excited states,
respectively.

We label the variable dimensionless extracellular potas-
sium concentration by z�t�	0. Its dynamics is given in ac-
cordance with Eq. �1� by

ż = 
g�x� − �z , �7�

with z=z0=0 corresponding to the steady concentration
�K+�0 and � is the rate of ion losses. Respectively the param-
eter 
 stands for the summary ionic fluxes outward the cells.
It scales inversely as well to the size of the extracellular
volume. These fluxes are released into the exterior for high x
values if the cell is excited and channels are open �x�2�.
They disappear in the rest state x�−1 if channels are closed.

Hence, likewise for the time scales we are able to use the
function Eq. �5� as switcher in Eq. �7�. Hence, we will set
g�x�=��x�.

The value of z enters in Eq. �3� with a factor C. It repre-
sents the depolarizing effect of the increased extracellular
concentration. For a given nonvanishing value of z it results
in an additional shift of the y nullcline decreasing effectively
the excitability value a. Mathematically we can call it a sec-
ond activator which was previously introduced in models for
nonlinear semiconductors �31�.

The set of equations described above is dimensionless
and, therefore, the relationship to ionic current-based neu-
ronal models can be only qualitative. However, for the sake
of simplicity and to keep the connection with the original
problem, we will use the terminology from neurophysiology
further on in order to describe the dynamic behavior of the
model as well as the meaning of control parameters. In the
following we refer to system �2�–�7� as the FHN-K model.

For the numerical simulations the following values of
control parameter values were used: �=0.04, a0=1.04, C
=0.0. . .0.1, 
=1.0. . .12.0, �=0.05. . .0.5, x0=0.0, xs=0.2,
�l=1.0. . .10.0, and �r=1.0. It sets the neuron without the
regulation by external potassium �C=0� in an excitable re-
gime.

C. Nullclines and fixed points of the single-unit model

Let us look for the main features of the model in terms of
the steady states and their stability. Note at C=0 our model
converges back to the original FitzHugh-Nagumo model
with cubic and linear nullclines and one single equilibrium
point, which is stable for �a0��1 and unstable otherwise.
Including the z dynamics the model �Eqs. �2�–�7�� possesses
three nullcline surfaces, which are depicted in Fig. 2�a� and
labeled X, Y, and Z according to the equation they satisfy.
One can see that more than one intersection is possible.
Namely, the condition ẋ= ẏ= ż=0 gives for the steady-state
values x0:

x0 + a0 =
1

2

C


�
�1 + tanh� x0

xs
	
 . �8�

We use a small xs and the right-hand side of Eq. �8� becomes
nearly a step function. Then one fixed point can be found
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FIG. 2. �a� The three-dimensional plot of nullclines for the FHN-K model. The intersections of the cubic x nullcline, linear y nullcline,
and sigmoidal-shaped z nullcline may provide three equilibrium points. �b� shows a representative trajectory near the stable equilibrium point
E1 �thick line�. The arrow indicates the initial perturbation.
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x1
0�−a0, which is always stable for the parameter range we

will consider. Thus, the system needs overthreshold stimuli
to enhance states with states z�0.

Taking C as the control parameter regulating the coupling
strength to the exterior variable z two additional fixed points
bifurcate at a critical value Ccrit resulting from


Ccrit�1 +�1 −
2xs


Ccrit
	 − xs atanh��1 −

2xs


Ccrit
	 − a = 0

�9�

with 
= 

2� .

Sections of Eq. �9� are depicted in Fig. 3. The upper fixed
point follows x3

0=C
 /�−a0 and the corresponding z value is
the highest z level the system can reach �z3

0=zmax=
 /��. The
fixed point in between is located at x2�xs�2
�� / �
C
−2�xs� which is only weakly dependent on C and is unstable
in every direction. In Fig. 2�a� they are labeled with E1, E2,
and E3, respectively.

In Fig. 2�b� a representative trajectory starting in the E1
vicinity is shown. The nullcline surfaces are given as projec-
tions on the horizontal and vertical planes. The arrow indi-
cates the initial perturbation that kicks the phase point from
E1. After a superthreshold push, the trajectory quickly moves
rightward, then slowly moves along the y direction, but dur-
ing this time it also moves upward approaching the z
nullcline. The vertical component of movement is defined by

. This segment is labeled with 1. Within the segment 2 of
the trajectory, the vertical component changes its direction;
now it moves downward controlled by �. When the phase
point comes back to the vicinity of the equilibrium point, it is
still raised along the z axis. From this level, the phase point
moves downward with pronounced damped oscillations. Be-
sides the fixed points there is also a parameter range where a
stable limit cycle appears �see the circles in Fig. 3 which
indicate the extremal elongation in x for the stable periodic
orbit�. Initially started outside of the basin of attraction of the
stable fixed points every trajectory ends up on that limit

cycle leading to an oscillatory behavior in x and y and a
nearly constant level of z. Due to a saddle-node bifurcation
the limit cycle loses stability in one direction for too small
and too high values of C. The thereby created saddlelike
limit cycle annihilates with the upper fixed point E3 via a
Hopf bifurcation illustrated in Fig. 3 at the transition from
the dashed to the solid line.

Beyond the limit cycle in a parameter range, where only
the two stable fixed points exist, x and y also start to oscillate
as a long-living transient when perturbating the lower fixed
point initiation as depicted in Fig. 4. In that case the z level
increases successively lifting the system up to the maximal
value. Thus, the depolarizing spikes transform to polarization
spikes elongating from the depolarized state down to the
former resting polarized level. For the selected set of param-
eters the level of z still increases. The inverse firing process
stops and reaches the stable steady state E3 where neurons
are embedded in extracellular space contaminated by potas-
sium.

III. NOISY BEHAVIOR OF A SINGLE UNIT

To understand the specific features of the FHN-K model
in a noisy regime, let us first consider the segment 3 of the
trajectory from Fig. 2�b� in terms of the excitation threshold.
Figure 5�a� shows the time courses of the model variables at
a=1.004 when a short external pulse initiates the generation
of a single spike. For specific values of 
, the activation of z
variable is relatively fast. In the middle panel of Fig. 5 one
can compare the inhibitor behavior for C=0.008 �solid
curve� compared with the C=0 case �dashed curve�. Gener-
ally, the solid curve runs lower after the spike was generated.
However, there is a more complex response near the resting
state.
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FIG. 3. Bifurcation diagram for C as the control parameter. The
x value of the fixed points is plotted �dashed and solid lines�.
Circles correspond to the extremal elongation x values of the limit
cycle.
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Figure 5�b� shows details. As we discussed above, an in-
creased value of z evokes damped oscillations. During
maxima of these oscillations the distance to values in phase
space where a new excitation starts is minimal. Hence, dur-
ing the moments of maximal elongation a weaker external
forcing is sufficient to excite the next spike. This feature is
important for understanding how noisy input acts in this
model. Namely, after a spike was produced and the refrac-
tory time is over, there are few moments of larger probability
for the next noise-induced firing. It resembles the behavior of
so-called resonate-and-fire neurons �32,33� with subthresh-
old oscillations. But, differently, it occurs only after a spiking
event, if still the exterior with z�0 influences the behavior
of the neuron.

The noisy behavior of model �2�–�6� is significantly con-
trolled by the mechanism described above. For appropriate
small D values a larger number of noise-induced spikes ap-
pears at the first elongation after approaching the rest state as
shown at t�20 in Fig. 5�b�. There is a kind of stochastic
positive feedback: once appeared, the noise-induced spiking
can continue showing high regularity. If at this state current
noise values were too small to override the minimized
threshold, then the next spike will occur after a considerably
longer time interval and noisy bursting is observed �33–35�.

The described subthreshold oscillations are responsible
for specific features of the averaged spectral power density
S�f�. In the left column of Fig. 6 we compare the densities of
the unperturbed FHN model �case C=0, given in gray� and
of our model at C=0.03 �Eqs. �2�–�6��. For all panels of the
figure, the noise intensity D is assumed to be small, so the
noisy forcing can be regarded as weak. Both cases start with
just the same shape of S�f�, when only few spikes appear
during the observation time �not shown in figure�. In the
FHN model, the further increasing of D leads to the forma-
tion of a broad peak at zero frequency that moves rightward
and reaches the position at f �0.06 at D=0.01. It corre-

sponds to the quite regular firing due to the effect of coher-
ence resonance �4,36,37�. Model �2�–�6� shows a similar
power spectrum at very weak and at the final �D=0.01� noise
strength, while the evolution of the spectra with increasing
noise is different. Instead of a single broad peak at zero, two
sharp peaks appear at zero and at f �0.075. The inspection
of time courses shows that the first peak corresponds to the
randomly appeared bursts, while the second peak corre-
sponds to the mean interspike distance within bursts. With
increasing D, the peak at zero gradually disappears, while the
peak at f �0.075 collects more power. The third row of pan-
els in Fig. 6 shows the considerably higher regularity of fir-
ing process in model �2�–�6� comparing with the FHN
model. A similar effect can be observed by inspecting the
probability distribution density of interspike intervals �ISI� as
shown in the right column of Fig. 6. While the activity near
zero frequency is mapped on interval values with larger than
20 time units, a pronounced peak is observed at ISI values
�1 which grows up to an optimal value with increasing in-
tensity of noise D.

To summarize, the noisy behavior of a single excitable
unit is characterized by coherence resonance and by excita-
tion of bursting with �statistically� large intervals between
groups of spike. This interesting dynamics is reflected by
both the spectral power density and the ISI distribution den-
sity. The origin of this feature is what one can call a subse-
quent self-induced depolarization in interaction with the ex-
terior potassium. Note that this result is consistent with
previously reported behavior of higher-dimensional quantita-
tive models �19–21�

IV. TWO EXCITABLE UNITS INTERACTING
WITH A COMMON EXTERIOR

The above described self-depolarization plays an impor-
tant role when two excitable cells share one reservoir with
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density z�t�. Therefore, Eq. �7� is replaced by

ż = 
���x1� + ��x2�� − �z , �10�

where x1 and x2 belong to the first and second unit each
described by equations like Eqs. �2� and �3� with the com-
mon variable z�t�.

In such a case, firing of one unit provides depolarization
for both. Figure 7�a� illustrates the interaction. Originally,
taking separately both units are excitable, so that without
external input they remain in the rest position. When a noisy
stimulus or an external perturbation initiates a spike in the
first unit as shown in Fig. 7�a�, almost instantaneously the
second unit becomes strongly depolarized and starts also fir-
ing with large probability. Considering the collective re-
sponse, it creates a doublet, like it is shown in Fig. 7�a� at
t� �5,10�. Note that the specific time interval in which the
second spike appears depends on the current values of the
noisy stimulus.

If the feedback controlled by C is strong enough, a self-
sustained continuous firing occurs after one of the units was
excited. In this regime in case of identical units equally
spaced time intervals between spikes of the first and the sec-
ond units are adjusted �Fig. 7�b��. The two units fire perfectly
in antiphase an effect which is known from glycolytic oscil-
lations in cells �38�.

Looking forward to the firing patterns in the 2D array of
many units discussed in the next section, one can expect
both: a temporal shifted firing of neighboring neurons �“one-
induced-by-another” pattern� as well as a tendency to an-
tiphase firing of neighboring units. The latter shows a
doubled frequency in the collective response.

V. NOISY DYNAMICS OF SPATIALLY EXTENDED
MODELS

Coming to the extended scenario we consider an inhomo-
geneous medium with separated active units on the one hand

and exterior modeled by z on the other hand. There are two
main possibilities to construct large ensembles of coupled
units in two dimensions defined by Eqs. �2�–�6�.

On the one hand, on can assume that the z�r� , t� variable
describes a continuous diffusive medium with spatial coordi-
nates r�= �r1 ,r2�. The excitable units are placed in a second
layer at locally separated sites coupled by the diffusing field
z�r� , t�. On the other hand, one can alternatively consider a
binary medium, consisting of excitable elements embedded
in the nonexcitable field z�r� , t�, which diffuses in the remain-
ing space of the two-dimensional medium.

The first approach is evidently and leads to a usual
reaction-diffusion system with three variables. Two variables
are locally defined and coupled via the third. One might
imagine a two-layer system with excitable units located in-
side a gel with low connectivity. The interaction inside this
first layer can be neglected compared to the diffusive cou-
pling of the third species z�r� , t�. For such mixed systems with
densely packed excitable particles surrounded by reactive
emulsions pattern formation has been observed in chemical
experiments �39,40�.

According to the original model of potassium mediated
neuronal activity, the space is divided on cells that are elec-
trochemical active surrounded of extracellular space being
the diffusive medium for potassium ions. Thus, in the present
work we will follow the second approach. However, we also
considered the two-layer system, which we will compare to
the binary system giving short remarks at the corresponding
places.

In particular we use a regular array of active units in each
row and column illustrated in Fig. 8 following Eqs. �2� and
�3�. For each point of the intermediate diffusive medium it
holds:

żij = 
 �
k�nb1

��xk� + � �
l,m�nb2

�zlm − zij� − �zij , �11�

where the subscript ij denotes the current point in space. The
second additional term describes the diffusion of the z field
with the diffusion coefficient �. The sum indices nb1,2 denote
the sets of neighboring “neurons” and coupled units, respec-
tively. We have implemented several types of coupling such
as nearest- or next-nearest neighbor coupling for nb1 and/or
nb2. To keep it clear we discuss the results only for the
coupling to the next eight surrounding boxes, where the di-
agonal elements are scaled by a factor of 1 /�2. Taking more
neighboring cells into account has no mentionable impact.
Note, that in contrast to conventional reaction-diffusion sys-
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FIG. 7. Characteristic operating regimes of two coupled excit-
able units. Left panel: temporal evolution at weak noise. The first
unit with x1 starts firing first and provides an increase in the com-
mon external z level. It depolarizes the second unit and supports its
noise-induced firing. Right panel: both units are in an oscillatory
regime and show firing in antiphase. The frequency of the common
output has doubled. The limit cycle of these oscillations is in coex-
istence with the stable fixed point E1.
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FIG. 8. �Color online� Schematic of the extended arrangement
of neurons �N� and pure z cells in between.
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tems, the active units do not interact mutually but only via
the common variable z, whereas the exterior medium is lo-
cally coupled with itself and is additionally affected by the
neurons activity.

One can expect that the interplay between the refractory
time of an active cell �controlled by �l� and the time scale of
extracellular space �defined by the parameters 
, �, and � in
the equation for z� plays a key role in the spatiotemporal
dynamics. Therefore, we have selected some representative
examples that are discussed below as five trials.

All the computations are performed in conditions where
the identical individual units possess at least one stable fixed
point at x0=−a, which we choose as the initial condition. The
following parameters have been appointed in all cases: �
=0.04, a0=1.04, C=0.1, �r=1.0, x0=0, and xs=0.05. Essen-
tially only the parameters of the exterior have been set to
different values according to Table I.

With the increasing set number the mean z level rises
successively corresponding to a growing value of the cou-
pling parameter C. According to the bifurcation diagram
�Fig. 3� we go to the right along the abscissa and encounter
excitable, oscillatory, and bistable behavior. We underline
that the rest state of the uncoupled FHN is always a stable
homogeneous state of our dynamics with z=0. Excitations of
spatiotemporal structures need overthreshold noisy stimuli or
corresponding initial conditions.

A. Set No. 1: Waves, spots, and spirals (Fig. 9)

The local dynamics is excitable. By noise the units can be
activated and release z to their neighborhood. In this case the

outside concentration of the medium decays much faster than
the units recover, while the diffusion is too slow to distribute
the delivered z over a large distance. The units that crossed
over in the refractory period ignite other neighboring units
via the medium and a traveling noise-supported extended
wave is excited as it is depicted in Fig. 9�a�.

At the system borders or due to noise circular waves can
break and the free endings curl to form a spiral wave. Al-
though the dynamics is purely excitable at the chosen noise
intensity waves appear very regularly, noticeable in the time
series of Fig. 9�b�. The mean firing rate of the active cells is
rmean�0.1 and the mean exterior concentration is zmean
�0.8.

The combination of the chosen diffusion �=2.0 with con-
siderable refractory time of neurons stabilizes the location of
the center of noise-induced spiral wave in spite of all units
receive random stimulus of the same intensity. One may
eliminate in the dynamics the z variable which would reduce
the system of equations to two components standing for a
single activator x and inhibitor y. Compared to the usual case
the coupling term �diffusion of activator� appears in the
equation of the inhibitor similar to a Soret effect. Slightly
increased noise strength destroys the spiral wave structure by
splitting it into short fragmented traveling waves that nucle-
ate and annihilate in a random manner.

The release of potassium in the exterior is still sufficiently
low and so far no new fixed point bifurcates at high z values.
Therefore, the background in the large refractory state re-
laxes always to small z values as indicated by the dominating
dark color in the figure. In the two-layer system for a decay
rate of ��4 or smaller only short living wave segments
supported by noise appear.

B. Set No. 2: Noise-supported traveling clusters (Fig. 10)

The pronounced difference to the former set of parameters
is the very large z-diffusion coefficient � and the high noise
level. Nuclei that would lead to coherent patterns such as
spirals diffuse very fast forming still connected clusters of
delivered z. Such developed clusters can live relatively long
wandering through the medium due to the noisy forcing.

TABLE I. Values of the parameters of the exterior.

Parameters 
 � � �l D

Set No. 1 50.0 6.0 2.0 1.5 0.00005

Set No. 2 60.0 6.0 130 1.5 0.02

Set No. 3 6.0 0.35 4.0 1.5 0.0001

Set No. 4 10.0 0.6 0.2 2.0 0.00002

Set No. 5 150.0 6.3 2.0 1.5 0.003
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FIG. 9. �Color online� Parameter set no. 1: �a� noise-induced spirals and wave fronts. The color bar indicates the z level whereas white
and black represent active cells in the excited and rest states, respectively. �b� Time series of an arbitrary chosen cell.
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The local dynamics is excitable and possesses only the
lower fixed point as a steady state. Due to the fast z diffusion
a large vicinity of units gets activated whenever a unit is
excited. It supports the formation of a localized high-level z
region. Inside those areas the threshold of the units is low-
ered and the release of z increases. This process leads to
self-feeding meandering cluster as depicted in the snapshots
of Figs. 10�c�–10�f�.

Note that noise is necessary over the whole time to keep
the clusters alive. Switching the noise off leads to a complete
decay of the z level to zero. For the given noise intensity the
stochastically occurring spikes events are quite regular. The z
level follows the activation and forms also coherent oscilla-
tionlike elongation as shown in Fig. 10�b�. The mean rate is
rmean�0.2 and the mean z concentration is zmean�1.0.

C. Set No. 3: Desynchronized oscillators embedded
in a z sea (Fig. 11)

Compared to the former case less potassium is released
but it is also slower decaying. The refractory time is short
�l=O�1� compared to the decay time �−1 and therefore we
observe oscillating units �Fig. 11�b�� embedded in a situation
that high z values survive longer than the duration of one
oscillation period. Thus, the exterior is permanently fed by
potassium which is diffusing over long distances shown in
Fig. 11�a�.

Starting at the z=0 level, the active units first perform the
noise-induced transition to the oscillatory behavior. Except
for the initiating perturbation noise is not needed to keep the
oscillation alive. All units move along the stable limit cycle
but with different phases. Along such sites the medium is

(b)(a)

(c) (d) (f)(e)

FIG. 10. �Color online� Parameter set no. 2: colors like in Fig. 9�a� self-feeding clusters. �b� Time series of an arbitrary chosen cell and
of a neighboring z cell. �c�–�f� Snapshots of nucleating, wandering, and decaying clusters.
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FIG. 11. �Color online� Parameter set no. 3: �a� elevated z level due to permanently oscillating active cells. Colors like in Fig. 9�a�. �b�
Time series of an arbitrary chosen cell.

POSTNOV et al. PHYSICAL REVIEW E 80, 031921 �2009�

031921-8



quickly filled with z which starts to propagate elevating the
neighborhood and forming a frontlike spread over the space.
It is a typical scenario of nucleation in systems with multiple
attractors.

Despite that a second attractor at high z values exists it
will never be reached due to the decay rate � which is still
high enough to compensate the release of potassium with the
rate 
. Thus, a quasisteady picture remains with a sea of high
potassium populated by active units blinking regularly and
feeding the exterior with potassium. Here, we find for the
oscillation frequency rmean�0.34 and for the mean exterior
zmean�5.7.

Two times greater 
 and � and 20 times smaller diffusion
originate another similar pattern: after some transient, high z
concentration occupies all available space, after that, a noise-
induced neuronal firing moving as complex pattern through
the medium. A detailed inspection shows that the observed
behavior is locally based on the antiphase firing of neighbor-
ing units inside the constant sea of high z level. In 2D space
it produces a chesslike firing pattern, when all neighbors fire
in antiphase. In the deterministic case it forms regular phase
waves moving from borders to the center. Noise adds irregu-
larity and evokes many additional patterns.

In Fig. 13�a� the spatial correlation function is shown for
an arbitrary neuron over the distance to its neighboring ex-
citable units along a row. The solid line represents the long-
range correlation to the active units in the neighborhood,
when the noise has not yet disturbed the wavelike propaga-
tion of the stimulus that lifts the units to the limit cycle.

A slow decay of the correlation is shown expressing the
indirect diffusive coupling. The first dip corresponds to the
next-nearest neuron which is less correlated with the consid-
ered unit than the next but one. It reflects that on average
neighboring elements can fire preferable in antiphase.

However, a small amount of noise will drive the system to
a complete desynchronized state after a couple of oscillations
shown as the dashed line in Fig. 13�a�. The described situa-
tion is typical for the studied extended system and can be
found over a large parameter range. Also in the two-layer
system the same oscillating regime exists for the same pa-
rameter set.

D. Set No. 4: Oscillations form a propagating
ringlike pattern (Fig. 12)

Similar to the former parameter set, a single cell, fluctu-
ating around the rest state, can reach the stable limit cycle,
we mentioned above, by overcoming the unstable limit cycle
due to noise. At this noise level those events are rare. Once
happened � is so small that the z level around the oscillating
cell can rise and reach the next cells without decaying be-
fore. Therefore, all active units can be elevated to the oscil-
latory behavior successively and a concentric wave appears
shown in Fig. 12�a�. A typical time series of x recorded from
a single cell is depicted in Fig. 12�b�. For the chosen param-
eters the oscillation period after the transition is rmean
�0.25, while the z level averages zmean�6.0. Compared to
the last case diffusion of potassium is reduced drastically. It
gives reason that spatial structure can establish at length
scale of a few neurons.

In Fig. 13�b� the spatial correlation is shown, where the
solid line shows a long-range correlation shortly after initi-
ating the wave pattern. The active units are well synchro-
nized and it takes a longer time until the structure is de-
stroyed by noise. This state corresponds to the dashed line in
Fig. 13�b�.

Increasing � the stable and unstable limit cycles annihi-
late and the local dynamics is excitable. A noise-induced
superthreshold perturbation leads to a singular depolarization
of the active cell and the z level in its neighborhood in-
creases. Thus, the next cell becomes depolarized as well and
a singular ringlike wave emerges.

Further increase in � allows only a small neighborhood of
the initially activated cell to get enough released z. However,
such activated wave segments can be stable a long time
while traveling through the medium.

This kind of patterns always decays in the two-layer situ-
ation. The released z can diffuse to each site of the array
without restriction. So the release rate 
 needs to be greater.
For example, choosing 
=15 and a big enough initial
nucleus an oscillon is formed. This structure is an extended
but localized spot fed by oscillating cells inside and sur-
rounded by inactive cells.
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FIG. 12. �Color online� Parameter set no. 4: �a� noise-induced concentric waves. Colors like in Fig. 9�a�. �b� Time series of an arbitrary
chosen cell.
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E. Set No. 5: Bistability and inverted waves (Fig. 14)

Figure 14 illustrates the case of the highest release rate 

considered here. After the nucleation of a bistable wave all
the space becomes initially occupied by the high-level z state
�z=
 /��24� which is stable due to the bifurcation of a
second stable fixed point at the depolarized state of the cells.
Thus, the vicinity of the activated cells is permanently filled
with z dissipated with � and diffusively distributed with �.
An inverse situation occurs. Noise can create low level pat-
terns such as inverted spirals or propagating waves shaped
into the high-level z sea. They consist of polarized states
which propagate through the medium. Such coherent pat-
terns do not exist in the vicinity of the considered parameters
for the two-layer system, after the high-level z state is
reached. Only independent break-ins are taking place sto-
chastically. Depending on the noise configuration it is also
possible that the system reaches the z=0 state again by the
appearance of the inverted bistable front.

Other types of unconventional patterns have been previ-
ously reported. These are rotating spirals or target waves
which run from outward to the center called antispirals or

antiwaves, respectively. Such patterns have been found in the
Belousov-Zhabotinsky reaction and elsewhere and can be de-
scribed by reaction-diffusion systems �41–43�. Note that in
our case the rotational direction of the spirals and the propa-
gation of the waves is the same as for common waves like
presented in set no. 1.

From the dynamical point of view, the existence of this
regime can be explained as follows. The considerable eleva-
tion of z shifts the operation point of core FHN model to the
opposite side of the cubic nullcline. Operating on the back-
ground of high exterior z and corresponding to the shifted
fixed point, each subthreshold perturbation leads to an in-
verted spike being the impulse from resting high level to the
low one. Now �r controls the duration of a polarization spike
while �l defines the refractory time �Fig. 14�b�� The above
described mechanism is already discussed in Fig. 4 for a
single active unit having two stable steady states.

VI. CONCLUSIONS

In this paper we have introduced a model that qualita-
tively describes the neuronal dynamics at variable extracel-
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FIG. 13. The spatial correlations of set no. 3 �left� and set no. 4 �right� over the distance to neighboring neurons are shown without
considering the inactive space. Solid lines indicate transient behavior for early times; dashed lines show the system which becomes
uncorrelated due to noise.
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FIG. 14. �Color online� Parameter set no. 5: �a� a bistable wave covers the medium with the high-level z state. Colors like in Fig. 9�a�.
�b� Noise-induced inverted spirals and waves with polarized states appear. The scales are the same like in �a�.
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lular concentration of potassium ions. Using the FitzHugh-
Nagumo model as prototype for an excitable unit, we added
a pathway that qualitatively takes into account the potassium
release from the neurons and the depolarization �threshold
lowering� as a result of the increased extracellular potassium
level.

The analyses of the model for a single unit, for two
coupled units, as well as for an extended array have shown
the following:

�i� The stochastic model of a potassium-driven excitable
neuron exhibits bursting as the firing pattern. It is due to
subthreshold oscillations for higher values of potassium. As a
result, the power spectrum with increasing intensity differs
from the typical one for an excitable system with strong time
scale separation. It shows a pronounced and narrow peak at a
frequency different from zero. The broad peak gradually
close to zero frequency disappears with growing noise
intensity.

�ii� In the excitable regime two potassium-coupled neu-
rons being forced by noise show doublets of spikes. Firing of
one neuron strongly depolarizes the second neuron and
makes its firing almost inevitable. In many cases these dou-
blets tend to an oscillatory behavior being synchronized in
antiphase and possessing a frequency doubled to the spiking
of a singular neuron.

�iii� A two-dimensional array of potassium-driven neurons
shows a variety of noise-induced spatial-temporal firing pat-
terns depending on the relation between the characteristic
time scales of the model and the noise intensity. One of the

most interesting patterns is the long-living randomly walking
spots of depolarized states. Another effect is the high-level
potassium state with inverted spirals of the polarized state
being the result of the medium-driven shift of equilibrium
state toward the right part of cubic nullcline.

In spite of simplicity of the generalized model we use,
some links can be made between our results and relevant
neurophysiological studies. Namely, the well known but still
debating “potassium accumulation hypothesis” �22,44,45�
considers the self-sustained rise of extracellular potassium as
the cause of epileptiform activity. Taking it in mind, our
computational results can be classified as the following: the
short-term activation of z medium �including concentric and
running waves� might describe the potassium dynamics
within the physiological range, while the patterns with per-
sistent high level of z variable resemble the formation of
epileptic seizure and thus can be regarded as representing
pathological conditions. Thus, an interesting future work can
be done to reveal the possibility and conditions for mutual
transitions between “normal” and “pathological” states.
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